
adfa, p. 1, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Characterization of Android Malware Families by a
Reduced Set of Static Features

Javier Sedano1, Camelia Chira2, Silvia González1, Álvaro Herrero3, Emilio Corcha-
do4, and José Ramón Villar5

1Instituto Tecnológico de Castilla y León
C/ López Bravo 70, Pol. Ind. Villalonquejar, 09001, Burgos, Spain

{javier.sedano,silvia.gonzalez}@itcl.es

2Department of Computer Science, University of Cluj-Napoca
Baritiu 26-28, Cluj-Napoca 400027, Romania

camelia.chira@cs.utcluj.ro

3Department of Civil Engineering, University of Burgos, University of Burgos
Avenida de Cantabria s/n, 09006, Burgos, Spain

ahcosio@ubu.es

4Department of Computer Science and Automation, University of Salamanca
Plaza de la Merced, s/n, 37008, Salamanca, Spain

escorchado@usal.es

5Computer Science Department, University of Oviedo, ETSIMO
33005, Oviedo, Spain

villarjose@uniovi.es

Abstract. Due to the ever increasing amount and severity of attacks aimed at
compromising smartphones in general, and Android devices in particular, much
effort have been devoted in recent years to deal with such incidents. However,
accurate detection of bad-intentioned Android apps still is an open challenge.
As a follow-up step in an ongoing research, preset paper explores the selection
of features for the characterization of Android-malware families. The idea is to
select those features that are most relevant for characterizing malware families.
In order to do that, an evolutionary algorithm is proposed to perform feature se-
lection on the Drebin dataset, attaining interesting results on the most informa-
tive features for the characterization of representative families of existing An-
droid malware.

Keywords: Feature Selection, Genetic Algorithm, Android, Malware families

1 Introduction

Bad-intentioned people are taking advantage of the open nature of Android operating
system to exploit its vulnerabilities. It is one of the main targets of mobile-malware

mailto:camelia.chira@cs.utcluj.ro
mailto:ahcosio@ubu.es

creators because it is the most widely used mobile operating system [1]. The number
of apps available at Android’s official store has increased constantly from the very
beginning, up to more than 2.1 million [2] that are available nowadays. With regard
to the security issue, Android became the top mobile malware platform as well [3]
and it is forecast that the volume of Android malware will spike to 20 million during
2016when it was 4.26million at the end of 2014 and 7.10 million in first half of 2015
[4]. This operating system is an appealing target for bad-intentioned people, reaching
unexpected heights, as there are cases where PC malware is now being transfigured as
Android malware [5].

To fight against such a problem, it is required to understand the malware and its
nature, given that this nature is constantly evolving as it happens with most software.
Without understanding the malware, it will not be possible to practically develop an
effective solution [6]. Thus, present study is focused on the characterization of An-
droid malware families, trying to reduce the amount of app features needed to distin-
guish among all of them. To do so, a real-life benchmark dataset [7], [8] has been
analyzed by means of several feature selection strategies.

To more easily identify the malware family an app belongs to, authors address this
feature selection problem using a genetic algorithm guided by information theory
measures. Each individual encodes the subset of selected features using the binary
representation. The evolutionary search process is guided by crossover and mutation
operators specific to the binary encoding and a fitness function that evaluates the
quality of the encoded feature subset. In the current study, this fitness function is de-
fined as the mutual information.

Feature selection methods are normally used to reduce the number of features con-
sidered in a classification task by removing irrelevant or noisy features [9], [10]. Filter
methods perform feature selection independently from the learning algorithm while
wrapper models embed classifiers in the search model [11], [12].Filter methods select
features based on some measures that determine their relevance to the target class
without any correlation to a learning method.

There are many advantages of feature selection for malware detection; however,
little effort has been devoted until now to apply these methods of machine learning to
deal with malware features [13]. In [14] just information gain is used to rank the 32
static and dynamic features from a self-generated malware dataset containing 14,794
instances, comprising 30 legitimate apps. Samples of malware come from five differ-
ent families (GoldDream, PJApps, DroidKungFu2, Snake and Angry Birds Rio Un-
locker). To rank the features, four machine learning classifiers (Naïve Bayes, Ran-
domForest, Logistic Regression, and Support Vector Machine) were applied. The top
10 selected features were (in decreasing order of importance): Native_size, Na-
tive_shared, Other_shared, Vmpeak, Vmlib, Dalvik_RSS, Rxbytes, VmData,
Send_SMS, and CPU_Usage. In a different work [15], 88 dynamic features from 43
apps were collected and then analysed to discriminate between games and tools. The
underlying idea of this study was that distinguishing between games and tools would
provide a positive indication about the ability of detection algorithms to learn and
model the behavior applications and potentially detect malware. To do so, feature
selection was applied to identify the 10, 20 and 50 best features, according to Infor-

mation Gain, Chi Square, and Fisher Score. A similar analysis [16] by same authors
proposed a selection from 22,000 static features about 2,285 apps to distinguish be-
tween games and tools apps once again. The following classifiers were applied: Deci-
sion Tree, Naïve Bayes, Bayesian Networks, PART, Boosted Bayesian Networks,
Boosted Decision Tree, Random Forest, and Voting Feature Intervals. The obtained
results shown that the combination of Boosted Bayesian Networks and the top 800
features selected using Information Gain yield an accuracy level of 0.918 with a False
Positive Rate of 0.172.

Although MRMR has also been previously applied to the detection of malware
[17], present study differentiates from previous work as feature selection is now ap-
plied from a new perspective, trying to characterize the different Android malware
families, to gain deeper knowledge of malware nature. Additionally, to the best of the
authors knowledge, this is the very first proposal applying feature selection to an up-
to-date and large Android malware dataset in general terms and the Drebin one, more
precisely.

More recently, static analysis of Android malware families was already proposed
in [18], trying to identify the malware family of malicious apps. The main difference
when compared to present work is that family identification relied on apps payload.
That is, authors analyzed the Java Bytecode produced when the source code of apps is
compiled. It was analyzed through formal methods, being the system behaviour repre-
sented as an automaton. With regard to authors previous work [19], an improved evo-
lutionary algorithm for feature selection is now applied, and a more comprehensive
and recent dataset is considered in present paper.

The rest of this paper is organized as follows: the proposed evolutionary feature
selection algorithm is described in section 2, the experiments for the Drebin dataset
are presented in section 3, the results obtained are discussed in section 4 and the con-
clusions of the study are drawn in section 5.

2 Feature Selection

The big amount of features in the analysed dataset (see Section 3), the various feature
subsets that may be defined can be extensively evaluated using different methods. The
result of these methods can then be aggregated in a ranking scheme. It is proposed to
determine an ordered list of selected features using a genetic algorithm based on mu-
tual information as fitness function. The methods described in this section assume a
matrix X of N feature values in M samples and an output value y for each sample.

The proposed Genetic Algorithm (GA) encodes in each individual the feature se-
lection by using a binary representation of features. The size of each individual equals
the number of features and the value of each position can be 0 or 1, where 1 means
that the corresponding feature is selected (the number of features is N). It is proposed
to evaluate feature selection results using the mutual information (I).

Defined by means of their probability distribution, the mutual information be-
tween two variables has a high value for higher degrees of relevance between the two
features. Let 𝐼𝐼(𝑋𝑋,𝑌𝑌)be the mutual information between two features, given by:

 𝐼𝐼(𝑋𝑋,𝑌𝑌) = ∬𝑝𝑝(𝑥𝑥,𝑦𝑦) ∗ log � 𝑝𝑝(𝑥𝑥,𝑦𝑦)
𝑝𝑝(𝑥𝑥)∗𝑝𝑝(𝑦𝑦)

� 𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦 (1)

The genetic algorithm resulting by using 𝐼𝐼(𝑋𝑋,𝑌𝑌) as the fitness function, named
GA-I, is outlined below. N G and t denote the population size, the maximum number
of generations and the current generation, respectively.

Algorithm: GA-I Feature Selection
Require: X the input variables data set
Require: Y the output vector
P ← a vector of N Individual objects
t ← 0
Generate the initial population P(t): randomly initialize the value of each individual
while t <G do

Evaluate each individual IND in P(t): calculate I(IND, Y) value
P(t +1) ← roulette wheel selection from P(t)
for all individuals IND in P(t + 1) do

Select mate J from P(t + 1)
K ←two-point crossover (IND, J)
if fitness(K) > fitness(IND) then

IND ← K
end if
L ← mutation(IND)
if fitness(L) > fitness(IND) then

IND ← L
end if

end for
t ← t+1

end while
Return Best Individual in P(t)

The GA follows a standard scheme in which roulette wheel selection, two-point
crossover and swap mutation are used to guide the search. Each individual is evaluat-
ed based on the correlation between the current subset of selected features and the
output, given by I.

Furthermore, a second variant of the GA-I algorithm (called GA-I-W, where W
stands for weighted) is proposed in order to control the number of features selected in
an individual. In order to do that, the fitness function of GA-I-W is based on a
weighted scheme between the information theory measure and the number of selected
features.

Let k(x) be the size of the feature subset encoded in an individual x and w a real
parameter between 0 and 1, denoting the weight of each fitness component. The
weighted fitness function for an individual x is depicted in Eq. 2.

 𝑓𝑓(𝑥𝑥) = 𝑤𝑤 ⋅ 𝐼𝐼(𝑥𝑥) + (1 − 𝑤𝑤) ⋅ 1/𝑘𝑘(𝑥𝑥) (2)

The maximization of f would also lead to a minimum number of possible selected
features in the individual. It should be noted that the features would only be selected
as long as a high value of I(x) still emerges in the current individual. This balance is
ensured by the value of the weight parameter w. A 0.5 value w gives the same rele-

vance to both measurements, while higher values of w can be used to give a relative
higher importance to the information theory measure value compared to the size of
the feature subset.

3 Experimental Study

As previously explained, several approaches for features selection have been applied
to the characterization of Android malware. The analysed dataset is described in sub-
section 3.1 and the obtained results are introduced and described in sub-section 3.2.

3.1 Drebin Dataset

The Drebin dataset [7],[8] is a collection of Android apps gathered from the Android
official market (Google Play) and from some other un-official sources (alternative
markets, websites, forums…) between 2010 and 2012. The gathered apps were ana-
lysed through the VirusTotal [20] service, being declared as malicious when more
than one of the applied scanners identified the app as an anomalous one. As a result,
the dataset contains123,441 benign applications and 5,554 malicious applications
(128,995 in total), being one of the largest publicly-available datasets containing legit-
imate and malicious Android apps. Aps from 179 different families were collected.

Data were extracted from the manifest and the disassembled dex code of the apps,
obtained by a linear sweep over the application’s content [8]. Every sample in the
dataset is associated to an analysed app and the values of the sample represent the
given values of app characteristics, such as permissions, intents and API calls.

The following feature sets were extracted from the manifest file of every app [8]:

• Hardware components: contains information about the hardware components re-
quested by the app.

• Requested permissions: contains information about the permission system, the
main security mechanism of Android. Permissions declared by the app, and hence
requested before installation, are taking into account.

• App components: contains information about the different types of components in
the app, each defining different interfaces to the system.

• Filtered intents: contains information about intents (passive data structures ex-
changed as asynchronous messages for inter-process and intra-process communica-
tion).

Additionally, some other feature sets were extracted from the dex information ex-
tracted from the apk files of the apps [8]:

• Restricted API calls: contains information about the calls defined in the app to
those APIs defined as critical. Although that information must be declared in the
manifest file, exactly for being malware, some APIs may be accessed without de-
claring that in the manifest file (root exploits) and hence the information is double
checked with the API calls from the dex code.

• Used permissions: contains information about the permissions that must be granted
for the calls identified in previous feature subset. It is once again a way of double-
checking the manifest file; the permissions in this case.

• Suspicious API calls: contains information about calls defined in the app to those
APIs identified by the authors of the dataset as potentially dangerous. It includes
calls for accessing sensitive data, communicating over the network, sending and
receiving SMS messages, execution of external commands, and obfuscation.

• Network addresses: contains information about IP addresses, hostnames and URLs
found in the dex code.

The previously defined features sets resulted in an initial set of features for the an-
alysed apps. Each one of these features takes binary values: 0 if the app does not con-
tain such feature and 1 otherwise. To aggregate this information at a family level,
feature data were summarized for each family, taking binary values as well: 1 if any
app from the family does contain such feature and 0 otherwise.

3.2 Results

The previously described GA-I and GA-I-W algorithms (see Section 2) have been
applied for the selection of features from the Drebin dataset (see Section 3.1). For
each one of the algorithms, three sets of experiments have been carried out, with the
maximum number of features to be selected taking values of 10, 30 and 50. Two in-
termediate values of w (0.5 and 0.7) have been selected for comparison purposed. On
the other hand, the following values were setting for the parameters of the GA:

• Population size: 100.
• Number of generations: 100.
• Number of runs for the algorithm for each experiment: 50.

The number of features selected by the two different algorithms is 188. As it is too
high taking into account the aim of present paper, in order to reduce it, selected fea-
tures are grouped according to their similar properties. As a result, the following 11
different groups of selected features were generated: activity::, api_call::android/,
call::Cipher, call::getWifiState, intent::android.intent.action, permis-
sion::android.permission, service_receiver::, url::, re-
al_permission::android.permission, provider::android.appwidget.provider, and fea-
ture::android.hardware.screen.landscape. Average values of I() for each one of these
groups of features, when running the GA, are shown in Fig. 1. The Y axis shows the
values of I and the X axis represents the associated group of features.

Fig. 1. Average values of I() for each group of features.

To summarize results of the 50 runs for each experiment, percentages were calcu-
lated for each group of features and algorithm. In the case of GA-I, percentages are
shown in Table 1 while percentages of GA-I-W are shown in Table 2. Additionally,
general results are shown in Fig. 2.

Table 1. Percentage of runs in which groups of features are selected by the GA-I algorithm.

Feature 10 Features max 30 Features max 50 Features max
activity:: 3,33% 5,26% 8,81%

api_call::android/ 0,16% 0,00% 0,64%
call::Cipher 0,21% 0,21% 0,21%

call::getWifiState 0,00% 0,00% 0,05%
intent::android.intent.action 0,00% 0,21% 0,48%

permission::android.permission. 0,11% 0,21% 0,64%
service_receiver::. 1,29% 2,42% 3,60%

url:: 3,97% 7,63% 13,64%
real_permission::android.permission. 0,00% 0,00% 0,00%
provider::android.appwidget.provider 0,00% 0,00% 0,00%

feature::android.hardware.screen.landscape 0,05% 0,00% 0,00%

Table 2. Percentage of runs in which groups of features are selected by the GA-I-W algorithm.

 10 Features max 30 Features max 50 Features max
Feature W=0.7 W=0.5 W=0.7 W=0.5 W=0.7 W=0.5
activity:: 2,58% 3.23% 4,30% 3.63% 8,16% 7.78%

api_call::android/ 0,32% 0.17% 0,11% 0.06% 0,64% 0.40%
call::Cipher 0,00% 0.11% 0,11% 0.00% 0,27% 0.11%

call::getWifiState 0,00% 0.00% 0,05% 0.00% 0,00% 0.00%
intent::android.intent.action 0,05% 0.11% 0,05% 0.06% 0,32% 0.23%

permission::android.permission. 0,11% 0.06% 0,05% 0.11% 0,43% 0.34%

service_receiver::. 1,13% 0.91% 2,26% 1.87% 4,46% 3.46%
url:: 4,24% 4.20% 4,67% 4.26% 12,30% 11.46%

real_permission::android.permission. 0,00% 0.00% 0,00% 0.00% 0,11% 0.00%
provider::android.appwidget.provider 0,05% 0.00% 0,00% 0.00% 0,05% 0.00%

feature::android.hardware.screen.landscape 0,00% 0.00% 0,00% 0.00% 0,00% 0.00%

Fig. 2. Percentage of runs in which the group of features are selected by GA-I and GA-I-W
algorithms. General results calculated from all the experiments.

As it can be seen from the results shown in tables above, group of features url::,
activity:: and service_receiver:: take the highest values of selection by the two algo-
rithms. In general terms, it can be concluded that those groups of features are the most
relevant ones for the characterization of Android malware families, according to the
results from GA-I and GA-I-W.As url:: gets the highest scores, it means that looking
into the URLs that are present in the disassembled core is critical in order to identify
the family a malware belongs to. Malicious apps usually establish network connec-
tions to retrieve commands or exfiltrate data collected from the device. In a decreas-
ing order of importance, the second group of features is activity::. It means that this
kind of app components is the most informative ones. As service components are also
important, it can be said that app components are very informative in order to discrim-
inate between malware families.

11 types of features are present in the dataset: activity, api_call, call, feature, in-
tent, network, permission, provider, real_permission, service_receiver, and url. Only
one of them (network) is not present (even at a reduced percentage) in the features
selected by any of the algorithms. As it can be seen, the group of features that have
been selected in most executions are the same for the GA-I and GA-I-W with values
of w equal to 0.5 and 0.7.

Fig. 3. Fitness evolution for I() values with 30 features limit.

a) GA-I (w=1)

b) GA-I-W with w=0.5 c) GA-I-W with w=0.7

It should be noted that the GA methods were able to reach the optimum values in
the population during the second half of the search process – around generation 30
(see Fig. 3). Each line represents a run of the algorithm, some lines overlap in some
executions that were similar - and that is why not every single line of the 50 total lines
can be identified. This is due to the low feature quantity limits, which were set to 10,
30, and 50, and led to a size easier to handle (notwithstanding the actual size of the
dataset) and enabled to quickly explore many feature subsets.

4 Conclusions and Future Work

By applying the proposed algorithms of feature selection, Android malware families
are characterized. Thanks to such characterization, key features to distinguish from
one malware family to the other ones are identified. This is a great contribution for
malware detection tools as it is not only important to detect every single intrusion but
also to know the family to run appropriate countermeasures.

Experimental results show that the two applied algorithms for feature selection
agree on the selection of the 3 main groups of features. By large, url:: and activity::

are identified as the most important features for characterizing malware families as
they get the highest percentages in both GA-I and GA-I-W. Feature dealing with
URLs in the app code is the most important one to identify the family of a malware
sample; it means that it is more important to take into account the external infor-
mation (where the app is connecting to) rather than the characteristics of the app it-
self. Consequently, focusing on this piece of information could optimize the analysis
of malware. Additionally, from the internal information, activities is the most relevant
feature by large.

Future work will focus on proposing further adaptations of feature selection algo-
rithms to ease the characterization of android malware.

Acknowledgments

This research has been partially supported through the project of the Spanish Ministry
of Economy and Competitiveness RTC-2014-3059-4. The authors would also like to
thank the BIO/BU09/14 and the Spanish Ministry of Science and Innovation PID
560300-2009-11.

References

1. Statista - The Statistics Portal, http://www.statista.com/statistics/266219/global-
smartphone-sales-since-1st-quarter-2009-by-operating-system/ (Last accessed: 2016-07-
08)

2. AppBrain Stats, http://www.appbrain.com/stats/stats-index (Last accessed: 2016-07-08)
3. Micro, T.: The Fine Line: 2016 Trend Micro Security Predictions. (2015)
4. Mind the (Security) Gaps: The 1H 2015 Mobile Threat Landscape,

http://www.trendmicro.com/vinfo/us/security/news/mobile-safety/mind-the-security-gaps-
1h-2015-mobile-threat-landscape (Last accessed: 2016-07-08)

5. F-Secure: Q1 2014 Mobile Threat Report. (2015)
6. Yajin, Z., Xuxian, J.: Dissecting Android Malware: Characterization and Evolution. 2012

IEEE Symposium on Security and Privacy (2012) 95-109
7. Spreitzenbarth, M., Echtler, F., Schreck, T., Freling, F.C., Hoffmann, J.: Mobile-Sandbox:

Having a Deeper Look into Android Applications. 28th International ACM Symposium on
Applied Computing (SAC) (2013)

8. Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K.: DREBIN: Effective and
Explainable Detection of Android Malware in Your Pocket. 21st Annual Network and Dis-
tributed System Security Symposium (2014)

9. Guyon, I., Elisseeff, A.: An Introduction to Variable and Feature Selection. The Journal of
Machine Learning Research 3 (2003) 1157-1182

10. Larrañaga, P., Calvo, B., Santana, R., Bielza, C., Galdiano, J., Inza, I., Lozano, J.A., Ar-
mañanzas, R., Santafé, G., Pérez, A.: Machine Learning in Bioinformatics. Briefings in
Bioinformatics 7 (2006) 86-112

11. Ding, C., Peng, H.: Minimum Redundancy Feature Selection from Microarray Gene Ex-
pression Data. Journal of Bioinformatics and Computational Biology 3 (2005) 185-205

12. Liu, H., Liu, L., Zhang, H.: Ensemble Gene Selection by Grouping for Microarray Data
Classification. Journal of Biomedical Informatics 43 (2010) 81-87

http://www.statista.com/statistics/266219/global-smartphone-sales-since-1st-quarter-2009-by-operating-system/
http://www.statista.com/statistics/266219/global-smartphone-sales-since-1st-quarter-2009-by-operating-system/
http://www.appbrain.com/stats/stats-index
http://www.trendmicro.com/vinfo/us/security/news/mobile-safety/mind-the-security-gaps-1h-2015-mobile-threat-landscape
http://www.trendmicro.com/vinfo/us/security/news/mobile-safety/mind-the-security-gaps-1h-2015-mobile-threat-landscape

13. Feizollah, A., Anuar, N.B., Salleh, R., Wahab, A.W.A.: A Review on Feature Selection in
Mobile Malware Detection. Digital Investigation 13 (2015) 22-37

14. Hyo-Sik, H., Mi-Jung, C.: Analysis of Android Malware Detection Performance using
Machine Learning Classifiers. 2013 International Conference on ICT Convergence (2013)
490-495

15. Shabtai, A., Elovici, Y.: Applying Behavioral Detection on Android-Based Devices. In:
Cai, Y., Magedanz, T., Li, M., Xia, J., Giannelli, C. (eds.): Mobile Wireless Middleware,
Operating Systems, and Applications: Third International Conference, Mobilware 2010,
Chicago, IL, USA, June 30 - July 2, 2010. Revised Selected Papers. Springer Berlin Hei-
delberg, Berlin, Heidelberg (2010) 235-249

16. Shabtai, A., Fledel, Y., Elovici, Y.: Automated Static Code Analysis for Classifying An-
droid Applications Using Machine Learning. 2010 International Conference on Computa-
tional Intelligence and Security (2010) 329-333

17. Vinod, P., Laxmi, V., Gaur, M.S., Naval, S., Faruki, P.: MCF: MultiComponent Features
for Malware Analysis. 27th International Conference on Advanced Information Network-
ing and Applications Workshops (WAINA) (2013) 1076-1081

18. Battista, P., Mercaldo, F., Nardone, V., Santone, A., Visaggio, C.: Identification of An-
droid Malware Families with Model Checking. 2nd International Conference on Infor-
mation Systems Security and Privacy (2016)

19. Sedano, J., Chira, C., González, S., Herrero, Á., Corchado, E., Villar, J.: On the Selection
of Key Features for Android Malware Characterization. In: Herrero, Á., Baruque, B., Se-
dano, J., Quintián, H., Corchado, E. (eds.): International Joint Conference, Vol. 369.
Springer International Publishing (2015) 167-176

20. Virus Total, https://www.virustotal.com (Last accessed: 2016-07-08)

http://www.virustotal.com/

	1 Introduction
	2 Feature Selection
	3 Experimental Study
	3.1 Drebin Dataset
	3.2 Results

	4 Conclusions and Future Work
	References

